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Medium frequency plasma behavior can be investigated using an
MHD model with the addition of the Hall term to the.Ohm's law. Such
a model embodies some electron dynamics and can therefore be used
to investigate physically more complicated processes than a conven-
tional MHD model can. From the modeling standpoint, this mode!
works on the ion time scale and therefore avoids the shorter electron
time scale associated with a two-fluid approach. Here, we present one
such modet with its two as well as three-dimensional versions, test it
thoroughly against the linear analytic theory, and finally present an
application of the model to the study of the plasma waves generated at
a solar wind cometary gas interface. € 1993 Academic Prnss, Jac.
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INTRODUCTION

Conventional ideal magnetohydrodynamics serves as an
excellent tool in investigating low frequency plasma
behavior (e.g., w € w,;), in which domain both the electrons
and the ions can respond o an externally applied electric
field and move at the cE x B/B? velocity. Over distances
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larger than a Debye length no significant electric fields can
exist in a frame of reference moving with the plasma and the
electrons and the ions flow together.

The set of electrons and ions together behave mainly as a
charge neutral fluid. Any magnetic fields, in the ideal case
(e.g., where no resistivity or other dissipation is manifested),
become frozen in the fluid and move along with it. In this
domain the frequencies are mainly associated with ion
inertia and magnetic restoring forces. The electrons move to
maintain charge neutrality and by applying this constraint
they can be climinated from the problem.!

As one begins to investigate the next higher frequency
domain (i.e., where w ~ w ), one enters a domain in which
the ions start to slip across the magnetic field relative to the
electrons and the electrons must move along B to maintain
charge neutrality. Thus, as one would expect, the electron
and ion Muids no longer flow together and a two-fluid treat-
ment is required. A two-fluid approach suits ones needs.
However, if the full eleciron dynamics are kept, the highest
frequencies are the electron cyclotron and plasma frequen-
cics and one is obliged (o usc correspondingly short time
scales; this would limit one to very short time simulations.

It turns out, however, that many important results of the
two-lluid model can be obtained from a zero mass electron
approximation in which the electrons are always in force
balance {(no electron oscillations). To achieve this, one must
add the Hall term to Ohm’s law. Therefore, many important

! Electron motion along the magnetic field can be important here,
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effects in the second frequency domain {ie., @ ~ ;) can be
investigated using an MHD code with the addition of a
single term, keeping the luxury of long time steps.

Physically the Hall term accounts for the relative slippage
of the ions with respect the electrons across the magnetic
field as will be proven shortly. Closed current paths
(V -j=0) are maintained by ion flow across B and electron
flow along B. Thus, addition of the Hall term alone in an
MHD code will partially allow the electrons and the ions to
flow separately while the plasma remains quasi-neutral.
This greatly enriches the physics by introducing new modes
of oscillation.

For our urpose, a particle fluid code has been deveioped;
ie., a code which treats elements of the fluid as particles and
follows their motion. The numerical techniques are a com-
bination of particle simulation techniques (e.g., particle in
the cell method) and fluid simulation methods (e.g., the
Lax—Wendroff algorithm commonly employed in solving
fluid type equations’ for advancing B) [1]. Two- and three-
dimensional versions of the code have been constructed.
The present work represents extension of the earlier work
done by Leboeuf et al, Tajima er al, and Brunel et al,
[1-3].

The code has the flexibility of being used as a pure MHD
code by turning off the Hall term. It can also be easily
generalized to incorporate more physics by the inclusion of
resistivity, and thermal transport and also multiple ion
fluids can be introduced.

One technical difficulty can arise under some circumstan-
ces in using such a code to model a fluid. Fluid elements
should not flow through each other; in the model two fluid
elements with quite different velocities can find themselves
in the same spatial grid cell (such a problem is called multi-
streaming). Using a particle fluid code to model effects such
as shocks in which rapid velocity changes occur within very
small distances will lead to this situation, In a real gas (or
plasma) such multi-streaming also tends to arise for shock
situations but is prevented by viscosity (collisions). We
emulate nature in the code by introducing a flexible artificial
viscosity which acts as a drag between fluid clements in a
given grid cell and brings the fluid elements rapidly to the
same velocity.

A final remark regarding the correspondence between this
approach and a pure hydrocode is in order. Here, instead of
discretizing the analytic equations which form the basis
of the model (i.e, the ion momentum and Faraday’s law)
directly. the unconventional technique of emulating fluid
elements by finite-sized particles have been implemented.
To a conscientious observer, this technique may appear
a rather empirical one. As regards to the validity of the
approach, first, averaging the particle quantities in grid ceils
by an interpolation scheme has the net effect of producing

2 That is, equations which involve advective terms,
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the pure hydrodynamic quantities of density and velocity in
agreement with the later’s results as will be demonstrated;
second, we will show that over the frequency range where
the inclusion of the Hall term has a marked effect on wave
propagation properties, this approach accurately accounts
for the physics as expected analytically. As regards to its
usefulness, the model provides local (particle properties,
e.g., trajectories and phase space) as well as global (fluid
properties, ¢.g., averaged per cell particle quantities)
information about physical problems and, in that, it stands
unique. Furthermore, the finite particle temperatures
provides adequate background noise needed to excite the
highly dispersive waves. As one example the simulation
of the solar wind cometary plasma interaction has been
performed; the resuits show the generation of a shock region
in a cometary gas solar wind interaction region with
detailed depictions of particle trajectories and phase space
plots. Some of these results are discussed in the application
section, while others have been discussed elsewhere [4, 17].
The shock and the magnetoacoustic waves generation in the
cited example agree with the MHD predictions, while the
detailed particle trajectories and phase space plots which
reveal vital information about the cometary particle pickup
by the solar wind, the solar wind particle reflection at the
shock front, etc, are only attributed to the particle aspect of
the model.

The organization of the paper is as follows: in Section 1
the model is treated analytically and a dispersion relation is
obtained; in Section 2 the numerical model is extensively
discussed: in Section 3 we present extensive tests of the
model we developed by checking that it gives the proper
waves and dispersion as was obtained from the analytic
treatment of the fluid equations.’

1. ANALYTIC TREATMENT

Using linear analytic theory as in Tajima e al. [2], we
derive a general dispersion relation involving arbitrary
angles of propagation. The starting equations will be the
fluid equations and Maxwell’s equations. The ion fluid
momentum equation is written in a Lagrangian form (i.e., a
system which moves with the fluid since fluid elements are
treated like particles). The equation of motion is

n,-M,-%=n,-e(E+!-'X—B)—V-n.-- (1)

4

Here E and B are the seif-consistent electric and magnetic
fields at a given point in the plasma, v, is the ion fluid
velocity, I1; is the ion pressure tensor, and, finally, #, is the
ion density at that point.

* We have also shown that the model gives shocks with the proper jump
condition [4].
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Likewise the electron fluid momentum equation is

v,xB
c

dv, E4
nom,—= —n,
dr €

) -V -1I,=0, (2)
where the last =0 holds for s, set equal to zero. By
assuming the electron to have zero mass, since we are inter-
ested in low frequencies, and neglecting electron pressure,
Eq. (2) gives the following for the electric field E:

v, xB

E=— :
[

(3)

This is identical to the assumption of perfect conductivity
along the magnetic field (a useful approximation for many
plasmas of interest) and yields

E-B=0. (4)
These assumptions can be relaxed and resistivity and
electron pressure can be included; of course, this requires
that Eq. (4) be modified.

The equations for conservation of ions and electrons are
given by Eq. (5):

dn;, on;,

V-(n.v..)=0
df 2t + (nz.ev:‘c) 0

{3)

As already explained for low frequency modes we assume
guasi-neutrality »,=n,=n (here = means equal to a very
high degree; we use = from now on). Charge neutrality
requires that the current is divergence-free; ie.,

V.j=0. (6)

Of course, the current is simply given by

j=ne(¥,—v,). (7)
[t should be noted that n, = n, does not mean V-E =0, since
even a very small charge imbalance leads to large E; the E
that results is just what is required to give V-j=10.

These equations must be supplemented by Maxwell’s
equations; we¢ omit the displacement current:

(8)
(9)

Substituting E from Eq. (3) into the ion momentum,
Eq. {1), results in

dv, v,—v,)xB
nM__"=”e( v,)

—V.(IL\.
Tt ¢ (L)

(10)
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Next, substituting j from Eq. (7) into this equation gives

dv, jxB

nM,—{ ="V (I,). (11)

Substituting for the current j from Ampere’s law, (Eq. 8),
gives
Bx(VxB) _

dav;
— V. :
P it 4 (IT;),

(12}
where g is simply the ion mass density. Next substituting for
E from Eq. (3) into Faraday’s law, (Eq. 9), after using
Eqgs. (7) and (8) results in the following equation for the
evolution of the magnetic field:

iB 1 1
E:ch[Evij+EI—eBx(VxB)]. (13)

These last two equations {12) and {13), form the basis of our
model. There are a couple of important points about
Eq. (13). The first being that this equation is similar to the
magnetic field evolution equation for one fluid ideal MHD,
except for the presence of the second term (Hall term) on
the right-hand side. The second important point is that,
using Faraday’s law, Eq. (9), and the current, Eq. (7}, the
electron fluid velocity v, can be written as

C

v, =V,— VxB.

(14)

€

he

This is simply the first two terms in Eq. (13) before the cross
product with B; i.e,, the magnetic field evolution equation is
simply (neglecting the electron pressure term)

JB

E:Vx(vexB).

(13)
This now is identical to the magnetic field evolution equa-
tion for ideal MHD, except that it involves the electron fluid
velocity instead of the fluid mass velocity. This means that
the magnetic field is frozen to the flow of the electrons rather
than to the total fluid; the ions, because of their inertia, slip
with respect to B. :

We shail next derive a dispersion relation for general
(oblique) wave propagation using Eqs. (12) and (13), and
the equations of continuity and state for the ions.

At first we assume that the pressure is isotropic. This
being so, one obtains 11, = p, ||, where ]| is the unit dyadic
tensor; therefore, ¥ . (I1,}=Vp; in Eq. (12). Furthermore,

using an adiabatic equation of state for the ions results in
Vp,=7T.V én,. (16)

Next linearizing Eqgs. (12) and (13) about a spatially
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uniform equilibrium,” we obtain the following set (we drop
the subscript i);

dy

1
Po—= —EBOX(VxéB)—yTV&e (17)

60 B ¢
T=VX(VXB0)+4

Vx(Byx(VxdB)). {18)
e

Assuming simple plane wave solutions. Egs. (17) and
(18) reduce to the set,

pol —iwy) = —~4l—nBox(ik><(SB)—(};T5n)ik (19)

—iw B =7k x (vxBy)+aikx (Byx (i(kxéB));  {20)
please note that & in Eq. {(20) is ¢/4nnge.

One needs to relate the densities and fluid velocities in
Eqgs. (19)and (20) in order to obtain the dispersion relation.
This is done with the help ofthe continuity Eq. (5}, which
upon linearization and use of plane wave solutions gives

—iw on;+ ingk -v=0. (21)

Plugging this into Eqs. (19) and (20) and substituting
po=neM and ¢2=yT,/M (the ion acoustic speed), along
with the repeated use of the BAC-CAB vector identity rule,
gives
1
'= dan, Mo

.2

[k(B,-éB)—4JB(k-B,)]

+ 5 (kv)k 22)
o
—iw 6B =i[v(k-By) — By(k-v)]
+a(k-By)(k x 6B). (23)

Interestingly enough, when Eq. (23) is dotted with k, one
obtains k - 6B =20, as should be, since V-B=0. In order to
eliminate v from Eq. (23), let us take the dot product of
Eq. (22) with k, and use the fact that k- 5B =0 to obtain

kBB
Cdmpow (1 -k w?)

(24)

Substituting Eq. (24) into Eq. (22) gives v in terms of §B:

¥y=

[k(B,-5B)— oB(k-B,)]
dnp,m

K¢’ (B, 3B)k
dnpow’® (1 —kic/w?y

(25)

* The quantities with the subscript zerc are the equilibrium quantities,
and those preceded by & are the perlurbed ones.
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Finally using Eqs. (24) and (25) in Eq. (23) results in an
equation which involves only 6 B, which can then be used to
determine the dispersion relation between w and k; ie,,

k-B
iwSB=1i 0
I 1{4

(k(B,-6B)—3B(k-By)]

TPQW

4 [(k-By)Mk’c /o)) k—k’B,](B, '53)}
dnpoo(l —k'cjw?)

+a(k x SB)(k - B, ). (26)
From this equation the dispersion relation for any angle of
propagation can be obtained. '

Studies of oblique waves are of particular importance.
Aside from the applications to real experimental situations
which will become evident in the application section,
Section 4, oblique waves serve as excellent probes for
testing the validity of the particie MHD code that we have
developed. The reason can best be seen by looking at Fig. 1.
Figure 1 shows the current flow for a general oblique wave
[k = (k)j, k)]. The electron current fiows parallel to B, at
distances separated by half a wavelength, (z/k | ), the flow is
in opposite directions. lons, however, due to their inertia,
can move perpendicular to B; they flow in opposite direc-
tions at distances separated by (7/k,}, parallel to B,. The
combined electron and ion currents form closed current
loops so that V.j=0. The requirement that £, be zero
(from Eq. (4)) means that an electrostatic field develops
so that its parallel component just cancels the parallel
component of the inductive E.
" The exact closure of the current loops, particularly for
nearly perpendicular propagation, provides a severe test of
a computer code; if the code gives the right dispersion
relation for such waves, we can have confidence it is treating
the physics correctly.

Using Eq. (26) the dispersion relation for oblique waves
is obtained with B in a fixed direction; e.g., along the z axis.

y | 172 )\“

™
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| Je o
i | J ey
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B
X

FIG. 1. Plasma response to oblique waves.
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That is,

.4
Wt ot { —kic - (L + 260 - S k|

4
+ot{akac s KRR+ k|

— kel =0, (27)
where the substitutions @B, =c%/w, and c% = Blf4np,
have been made, with ¢, being the Alfven speed and
o= c/dnen,,.

Next we test Eq. (27) in the limits of perpendicular and
parallel propagation, respectively. For perpendicular
propagation with k,, =0 the dispersion relation, Eq. (27),
immediately reduces to @® + w*(— k% (c? + ¢%)) =0, which
is simply the dispersion relation for magnetoacoustic waves
as expected; there are also two zero-frequency modes. One
of these is the zero-frequency convective mode which
corresponds to simple shear flow or vortex motion and, the
other zero-frequency mode corresponds to different den-
sitics being loaded on different flux tubes. For the parallel
case, on the other hand, with k| =0; Eq. 27 reduces to

2
o+ o' {_kﬁcg _e [2kﬁ v kﬁ]}

ci

4
¢
o {2k‘|‘|c§cf el + 4 k;cg}

ol

— kS e c2=0. (28)

This relationship gives rise to a biquadratic in the case of
¢, =0 which has the solution

k2 2 kz 2
o=t —”&ik“c,, fl+—”%:|.
2w, 4y,

(4]

(29)

This 1s simply the result which was obtained by Tajima et
al. [2] for parallel propagation,; it gives the whistler (right-
handed) and the ion cyciotron (left-handed) waves,

For the simulation results presented in this paper,
however, we required a more general dispersion relation
than Eq. (27). We used Egq. (26) with B, pointing at an
arbitrary direction, specified by polar and azimuthal angles
for comparisons with the simulation resulits. The interested
reader is referred to Eq. (103) in Appendix A for its deriva-
tion. Equation (103) can be obtained from Eq. {27) by a
simple rotation of the coordinate system. There are a couple
of points about Eq. (103) and the way it has been derived.
First, the reason why both the wave vector k and the
applied magnetic field By had to be set in arbitrary direc-
tions is that, when doing simulations, arbitrary directions
for both are genetally encountered; in the simulations, fast
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Fourier transform techniques have been used which restrict
k to discrete values. As a result, if one were to study a certain
arbitrary direction for wave propagation, one needs to also
change the direction of B,;. As we shall see later, many obh-
gue wave modes were studied and compared with this
analytic disperion reiation; this relation thus proved to be
very useful. The second point is that this relationship,
despite of its complex appearance, can be evaluated quickly
numerically. We shall use Eq. {103) a great deal later for
testing our model, and in our application section for
determining the kinds of MHD waves that are generated
in the simulation of cometary gas solar wind interactions.

2, NUMERICAL ALGORITHM

Our model is simply an intuitive construct based on well-
known fluid dynamics and Maxwell’s equations, geared
toward plasma physics applications, where many different
wave modes exist and are almost all fairly dispersive. Its
physical “conceptual basis” can be regarded as a model
which emulates motions with scales that are large compared
to the mesh (ion collisionless skin depth} or particle size, in
which the combined icn-electron dynamics adds more
waves to the system than a conventional MHD model has
and all of which tend to be fairly dispersive. It is this type of
the phenomenon that the model attempts to address; ie., a
physical domain in which conventional MHD as well as
hydrodynamic methods seem inadequate to account for the
complex physical behavior caused by the multitude of waves
and their dispersion.

We mathematically treat the fluid as an ensemble of dis-
crete elements or “particles”; ie,, we have divided the fluid
into small (but finite elements) which we treat as “particles”
and push them around in accordance with the magnetic and
pressure forces they experience; ie., quasi-particles whose
orbits foliow closely the motion of fluid elements although
they cannot stretch and deform like real fluid elements. Real
fluids are made of molecules and atoms (many more than
we use) which aré locally locked together by collisions.
These “particles” can be followed and this is what our model
does.

Equations (12) and (13) form the basis of the model. The
model employs a combination of Lagrangian and Eulerian
schemes; i.e., Lagrangian for the fluid elements and Eulerian
for the field equations. Equation {12} is a well-known equa-
tion of fluid dynamics and describes how an infinitesimal
element of the fluid moves. It is identical to Eq. (6.44) in
Potter [7] for the more simplified case of pure hydro-
dynamic flow.

In the course of following the motion of “particles” two or
more elements can occupy the same region of space (the
same spatial grid). To a large extent, this is inhibited
by pressure and magnetic forces, but it does happen,
particularly if there are more “particles” than cells. The fact
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that two or more “particles” can occupy the same cell
necessitates the introduction of v, the mean ion fnid
velocity. The B field motion is controlled by the electron
motion which responds to the total ion motion, ie., v,, and
the velocity of an individual fluid element. The grid we use
in solving the field equations is fixed in space and does not
move with the fluid and, hence, cannot become tangled up
due to the fluid vortex motion. Furthermore, the presence of
two or more “particles” in the same cell will mean collisions.
In a real fluid there are many molecules in a very small
volume of the fluid which we can consider a fluid element.
They are strongly locked together in their motion by colli-
sions. That is what the viscous drag between particles in the
same cell does in our model; i.e., an absorption mechanism
is provided by the strong drag between particles with
different velocities in one cell. 7

To sum up, “particle” positions are initialized on a fixed
background mesh; Eq. (12) is used to accelerate the “par-
ticles” in their self-consistent magnetic and pressure forces,
using a Lagrangian scheme (lcapfrog scheme); the fluid den-
sity, velocity, and pressure are computed by an interpola-
tion scheme as weighted averages of the particles’ quantitics
on the given spatial grids; the magnetic field is then pushed,
using the interpolated velocity v,in Eq. (13} by an Eulerian
approach (a Lax-—Wendroff method is used). This then
completes a full cycle of calculations. The remainder of
this section is devoted to the details of these steps.

2.1. Normalization

In these calculations we use the following normalization.
All the velocities in Eqs. (12)and (13) are normalized to the
ion acoustic speed c,, the magnetic field to the ratio of the
Alfven speed to the ion acoustic speed, all the spatial distan-
ces are normalized to the grid size, 4, and the time to the
time that it takes an ion acoustic wave to travel one grid
space. All of these remarks can be summarized as

~ B 1

B=—er— | V=-—V (30)
Janpg e, 4
d ¢, 0 . ¥
Ea—zﬁ, \'—-a, {3])

where the quantities with the tilde are the normalized
quantities used in the code.

An adiabatic equation of state was used for the ions; ic.,
pi/p’ =const; only an ion pressure was used. Upon intro-
ducing the above, Eqs. (12) and (13) in their normalized
form are

d 1/ n\t
_V=@(VXB)><B——(£) Vi (32)
dt n n\ng

3B .
E“:VX{VIXB—i’—;B(VXB)XB}. (33)
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The tildes have been dropped here for simplicity. Further-
more, the v which appears in Eq. {32) is that of fluid par-
ticles, while the v, which appears in Eq. (33) is the average
fluid velocity of all particles in a given grid cell. Furthermore
in Eq. (33), the Hall term is simply the coefficient i/,
where 4 is the collisionless skin depth for ions; Le., 4= ¢/w,;
{here 4 =14).7 It should now be clear that Eq. (33) s just
like the MHD equation for the magnetic field induction
except for the presence of the second term on the right-hand
side, the Hall term. One interesting feature of Eq. (33) can
be readily seen, namely, that if one sets A =0, then one
obtains the ideal MHD equation for the magnetic field
evolution. Thus the code has the flexibility of being easily
converted to a standard MHD one and tesied.

2.2. The Numerical Scheme

Next we shall describe the numerical scheme. The steps of
the scheme are summarized in Table 1. A leapfrog scheme
is used to push the particles for Eq. (32), while a Lax-
Wendroff method is used to push B for Eq. (33}); these have
been implemented as follows.

The particle positions r;, the density n, and the pressure
p and B are known at integer time steps /; the particle
velocities v are known at half-integer time steps 14 as
illustrated in Fig. 2.

First, v is pushed a half time step from time step / — § to
the time step / using Eq. (32) and the values of B and p at
time step /. Next, B is pushed from / to / + 1 as the auxiliary
step of the Lax—Wendroff scheme using Eq. (33) with the
spatial average values of B (please refer to item 5 of the
Table I} and the fluid velocity® v, at time step /. Then again
the fluid particle velocities are pushed from time step / to
!+ 3, using the values of B and p at the time step / in
Eq. (32). Having known v,and B at time step / + 3, we push
B all the way to time step /4 [ as the main step of the
Lax—Wendroff scheme in Eq. {32).

To avoid multi-streaming of fluid elements, an artificial
drag (artificial viscosity) between particles in a single grid
cell is included with a variable coefficient f which can be
adjusted to any desired value. The method of adding
adjustable artificial viscosity terms to handle steep gradients
and inviscid shocks were initially used by Von Neumann
[5]. Leboeuf et al. [1] also used this technique for studying
shocks using a one-dimensional model. Here the artificial
viscosity is introduced as a force which tends to drag par-
ticle velocities to the average of the velocity of all particles
in its grid cell. This is accomplished by dragging the ith

particle’s velocity by
Av;=f {"." z—‘;'_'“' VJ}
zje A; nj

5 Choosing A # 14 corresponds to taking grid spacings not the same as
the skin depth.

¢ Obtained from the area-weighting interpolation scheme that will be
discussed shortly.

(34)
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TABLE 1
Numerical Algorithm of the MHD Hall Term Model

Initially we have: BY, v/~ 2 r/
1. Compute fluid density »' from particle positions by interpolation.
2. Compute magnetic and pressure forces: [(VxB)xB= —V.
((B%2) || — BB)]

3. Push velocities half a time step:
vi= vy T2 F A2,

4. Compute fluid velocoties V.If from particle velocities by interpolation.
5. Push B half a time step as the auxiliary step of the Lax—Wendroff
scheme:

B2 (B>’+(V xlivf(xB’+ PRR
Al

(%2 il — B‘B)I:D 42,

where (Bl =3 (B, ,+ Bj_,+ B};,,+ B},_,) in two dimensions

and in three dimensions (B}, ; . has been properly averaged using the
edges of a cube surrounding the grid point {7, j, k}.
6. Push the velocities another half a time step:
V”' [ ¥ — V' + Fr Al,t‘z +f(|"j,-— ‘,ﬁ);
clearly then for f =0, v/* Y2 = /=12 1 F’ 4t = we have a leap frog for
v.
7. Push positions half a time step:

r1+l;’2=r1+ ‘,.'+”2 A!f,?

8. Compute fluid velocities vj* ** by interpolation.
9. Push B a full time step as the main step of the Lax~Wendiolf scheme;

Br+1 = B’-ﬁ- (v % [V::—J( 142 x B.‘+1/2

on B i+ 172
+/.;,—+%ﬁv'(? ||—BB) Dm.

10. Push positions half a time step: ¢+ =/ 12 4+ v/*+ 172 44/2, Clearly here

also, r'*' = r’ + v * 12 4t = a leapirog for r.
<7 ™.
Bramp — —r—> +
21 |2 I 1+1 22
I
v NN ,

T Ll i
2172 pri/2 B+ 372
FIG. 2. Time stepping scheme for B,r, 1, p, v.
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per time step. Here the sum over all j is over ail the particles
in the same cell as particle /7; fis chosen between 0 and 1;
0 gives no viscosity while 1 gives instant velocity relaxation
to the average. This completes a full cycle of a time step.
Table 1 summarizes this.

1.3. Interpolation Scheme

Particles are given a finite size in order to smooth out
density variations and to offset the need for a large number
of particles. Also since a discrete grid is used, there is a mini-
mum reselvable size for a disturbance and so our particigs
(fluid elements) might as well also be of this size. In this
code, however, the spatial extent simply gives rise ro 2 mass
distribution about the center of the particles.

The method of interpolation used in this code is a simple
area-weighting method which s extensively discussed by
Birdsall ez al. {6]. Using those techniques in one dimension
for the finite sized particles of size a (4d<a<24), ie,
particles which can overlap at the most three grid cells at a
time, the weight function w(x) as seen by the grid point x;
due to a particle at a distance x streaming from left to right
is found to be

{ x+ Adax a+A4 a—A)
a 0 S\VTT VT
A a—4a4 a—A
w(x)=<a—, xe(x}-—z—,xj+ 5 ) (35)
Adax —x e( +a—A +a-{—A)
_— A —, X+
\ a TEANT TN T

and it is zero otherwise, where dax = (¢ + A4)/2. As a result,
this weighting is identical to a mass assignment by linear
interpolation. With these results it should now be clear that
the mass density at a given grid point is

plx;) = z wix; —x,),

ied;

(36)

where the sum includes all the particles | whose area or
volume overlap the grid cell 4,.

Puiting all of these results topether one obtains the
following results for the weight of a particle to its neigh-
boring grid cells:

mﬁ(";"ﬂ)f—l (37)
w, = min {(H;A-x) ég} (38)
W,_; =max {(";Afx> i 0}. (39)

7 Please note that as one sums dv; over all the particles of the same
cell one obtains zero; i.e., there are no net forces from the drag term in a
given cell.



MHD HALL TERM MODEL

All of the particles which overlap a cell contribute to the
density and velocity at its grid point by this weighting
scheme.

Likewise the force F; on a particle / is the weighted sum
of the forces from all the grid points which contain any
fraction of that particle; that is,

Flx) = z Flxp) wix;— x,), (40)

where the sum over x;s is over all the grid points for which
|x;—x;| € (a+ 4)/2 for each spatial dimension. Equations
(36) and {40) will become useful in a later section as we
study finite size particle effects.

2.4. Momentum and Magnetic Flux Conservation

Recall that the combined half time step pushers for the
velocity give the velocity push for a full time step according
toitems 2 and 6 in Table I (we write things here in terms of
the pressure tensor I rather than density):

2 1
LI ES {n_? l:—V : (B— ﬂ — BB)]
n, 2

)V-l'l!+f(v}—vf)}m. (41)
Summing over all particles in the system gives
Z (vf_+i,f2_vf_kl,f2)
Vl i T
_ Po gy B85 ’
LT
g ieg g
+f(v}—vf.)} At. (42)

Here g simply stands for the grid cell and IT stands for the
ion pressure tensor.

Since finite differences were used in compuling all the
derivatives (i.e., in computing the divergence of the kinetic
pressure as well as the Maxwell stress tensor), then if one
sums over all the grid points in the system, each such quan-
tity will appear twice with opposite signs corresponding to
the cell boundaries that are being shared between the
neighboring cells, and they will thus add up to zero. There
can, however, be contributions from the walls of the com-
putation box, but for the periodic boundary conditions
chosen here, their contributions give zero. For other cases
momentum can be added to or removed from the system at
the boundaries as the physics requires. Thus here Eq. (42)
becomes

Y (vt _yim1) = Y ¥ (v}—vi)At. (43)

g ieg
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But 3. X%, v}———zf n v} since v, is a grid quantity. Also
3 2o Yi=2, nv, by the definition of v, This then
proves that in such a system momentum is exactly con-
served since the right-hand side of Eq. (43) is zero and,
therefore,

vt yim 12y, (44}

Likewise, the magnetic induction equation can be used to
yield the total magnetic flux in the system by summing the
flux through cell areas over the whole system. We proceed
as follows (the area of each cell, A:,, is unity due the
normalization), using item 9 of Table I {4 is normal to the
grid cell with area 4.):

zﬁ.{nfw;—zagaurza;mv |
vg

vg vg

o B _ I+ 12
x[v}“”sz’“ﬁ+An——,+mV-(?H—BB) ]}

which gives
TSR
vy

=EA§(BI+1_BI)‘&

e

WL {VX[‘:}HH xBIT12 40y
A

Mn’+1/2
B - 1+ 1/2
(Fim) ]

where @ is simply the magnetic flux.

All the quantities on the right-hand side are derivatives
and so, upon summation, will give zero as in the case of the
momentum and this proves our assertion, i.e.,

(46)

¢l+1=¢." (47}

2.5. Numerical Stability Analysis

in order to obtain the Courant—Fredricks-Lewy (CFL)
condition for the model, the difference equations for the
model (obtained from the differential equations for the
problem by discretizing them)} must be considered. We
follow the method of Potter [7];1.e., obtain the integration-
time pusher operator from the difference equations
assuming a spatially uniform system and solve them in
Fourier space and obtain non-local results. We shall do the
stability analysis once with and once without the Hall term
to see the effects of the Hall term on such an analysis. Thus
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for comparison purposes, identical physical conditions must
be considered.

Recall that the differential Equations (12) and (13) for-
med the basis of the model. In this analysis, we consider
parallel propagating Alfven waves only (i.e., whistler and
ion cyclotron waves), since in the perpendicuiar direction
the magnetoacoustic waves are unaffected by the addition of
the Hall term. We also consider low § plasmas, in which
case the pressure effects which give rise to the sound velocity
can be neglected since the Alfven velocity is much greater
than the sound velocity; and since the highest velocities
are most restrictive for stability, the sound waves can be
neglected. Equation (12), after neglecting the pressure term
and upon linearization, gives (B, = By X):

dv, ByéB,

B, 3B,
p dr 4m o8x’

dv. _ B, 9B.
Poai " am ox

(48)

Using Eq. (13), the differential equations for the two
non-zero field components (B, and B.} in their pseudo-
conservative forms are
0°B

0B, v,

v g, % 58,5 %20 49
dt 0Gx P02 (49)
oB. v, é*R

i = 5 i . 50
o Do tBog =0 (0)

Before obtaining the difference versions of Egs. (49) and
(50) we shall use them to gain an important insight into the
diffusive nature of the Hail term and its consequences. To do
so, let us multiply Eq. (49) by { and add it to Eq. (50),
keeping only the time derivative and the Hall term. With
%= B.+iB,, that operation will result in the equation

(51)

This is a diffusion equation with an imaginary diffusion
coefficient. Assuming Bece™—=1 (he dispersion relation
for Eq. (51) will be

w=k*B,. (52)
The solutions to Eq. (51) are thus oscillatory and not

damped as in the usual diffusion equation. Furthermore, the
phase velocity of the resulting waves are

(53)

UP = %) = k&Bo.
This simply means that at higher & values the phase velocity
v, becomes larger; i.e., the Hall term gives rise to high phase
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velocity waves and these will thus concern us most with
regards to stability. For this reason, later on, when we
attempt to obtain the stability condition for the case with
the Hall term present, the Hall term becomes the most
important term in the analysis.

Next using Eqs. (48)-(50), after combining the auxiliary
and the main steps of the Lax—Wendroff scheme and assum-
ing B and v to have the form (/ refers to the time step and
i inside the parenthesis to the grid location along x)

(Bl, v.’) — (ﬁl, i\,.’) e.r'(k,idx—hu Az), (54)

we obtain the following integration operators for B, and B,
=k, 4Ax)

oo ic3(A1)*sin’ g

* 2(4x)*sin(w 41/2)

ol eos2® ich(41)sin’ g ]
2 4{dx)*sin{w 41/2)
& B}sin' o (41)? B
(Ax)? 2 +
ic2(AtY'sin'q _sinzacosl(a/Z]At}o_cB &
2(4x)*sin(w 41/2) (dx)* 0=
(55}
and
B’*‘—{l— ic2(At)*sin’c
= 2(Ax) sin(c 41/2)
| cos2? ick(41)*sin’a
0% 3 T 4(dx)Tsin(w 4172)
@ Bgsinto (41)) ,
{d4x)* 2 :
3 ic2(4ty sin*o ;sinlacosz(aﬂ)m}&B B
2(4x)* sin{ew 4/2) (dx)? oy
{56)
Since Bitf'=e=*B/ and B!*'=e B! then

taking g=e~“ the Von Neumann stability condition
{(|B /B 1) reduces to |g| < 1. Thus, one needs to use
Eqs. (55) and (56) to obtain g, from which one can deter-
mine the stability condition. The two equations (55} and
(56) reduce upon that substitution to

(gfxl)Bj;'!“lei:O
“leﬁ_+(g—x|)B';=0,

(57
(58)
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where x, and y, are simply

x1=1—

ci(4t)?sin ¢ [coszg ic%(41)? sin* o ]
2(Ax)2 sin(w 4t/2) 2 4(dx) sin(w 4t/2)
&’ B} sin* g (41)?

[ {4y’ sin®a  sin’ g cos’{g/2) R
1A{2(Ax)4 sin(w 4¢2) (A4x)? t}a o
(60)

we next make the substitution 4x = Ay = A. The value of g
is then determined by setting the determinant of the
coefficients of B, and B! in Eqs. (57) and (58) equal to zero;
ie.,
}g - Y| 0
Vi £—x

(61)

Equation (61) reduces to
(g—x1)*+yi=0 (62)

and therefore the solutions for g are simply g=x, +iy,,
which upon substitution of x, and y, give rise to
| (4ry ¢ sin* o
Ex 8(d)" sin’(w 41/2)

41T aByci(dt) sin' o
Uy +724% sinw 4172)
Lil - e%(41)? sin? ¢ cos?(6/2)
242 sin(w A4/2)
_&B,Arsin? g cosz(cr/2)]
A4° |

__szsn o

(63)

When no Hall term is present (ie., & =0), this reduces to

(41)* ¢4 sin* o c%(41)* sin” g cos*(a/2)

=1- —i - . (64
= - i@ a2y 247 sin(w 412) (64)
From g=e._"“’m ~1—iwdt, with w=wg+iw, the
following dispersion relation is obtained:

i 2
coch” sin ¢ cos(o/ )- (65)
A
Using this in Eq. (64) gives
A 2.2 .02 :
g=1 —(—i)-*c—”m—ﬂc,, sin ¢ cos{g/2}).  (66)

24%cosX(s/2) 4
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The Von Neumann stability condition (|g| <
result in the following stability criterion:

Azs\/ici.
A

Here ¢, is to be understood as being the highest speed of
propagation that can exist in the system. This result shows
an improvement in the allowed time step compared with the
At < \/_/2 )(4/¢) obtained by Tajima et af. [2].5

Next, in order to obtain the stability condition for the
case with the Hall term present, we keep only the time dif-
ference term and the Hall term. As we saw above, the Hall
term gives a diffusion equation (with an imaginary diffusion
coefficient) and these give high phase velocity disturbances
for large k; this term thus dominates the stability considera-
tions. We can then compare the resulting condition with
that obtained by Tajima et al. [2] as those authors carried
out a similar analysis.

Keeping only the time difference and the Hall terms in
Eqgs. (49) and (50) gives

1) will then

(67)

_232 aBo At sin® o cos*(c/2)
0 2A4 A2 N

(4 F

£+ = 1—
(68)

Using the Von Neumann condition |g]| € 1, we obtain the

following stability condition®:

42 A2
AI<1667=166

4] CA/ ci

(69)

please note that here we used By =c?/w,;, as defined in
Eq. (27).

This result is physically reasonable in light of the fact that
the Hall term acts like a diffusion term (with an imaginary
coefficient), and the right-hand side of Eq. (69) is just the
diffusion time across a scale length A times a constant 1.66.
This result also demonstrates an improvement to that
obtained by Tajima et al. [2] and the superiority of the
Lax—Wendroff technique used in this model over the
simpler Lax technique employed there.

The above analysis equally applies to the three-
dimensional case, since parallel propagating waves were
considered in the analysis. In the simulations which were
performed here, ¢,=4¢, and w_, =4c,/4. As a result

% ¢ is the highest allowable speed of propagation in the system; ie., ¢,
here.

* Brunel ef al. [3] did use the Lax—Wendroff technique after Tajima et
af. [2]. They obtained a stability condition (Ar S_\/E dfc; ¢ is the highest
speed of propagation) for the case without the Hall term present. They did
not have the Hall term present and thus did not obtain a condition for that
case. As a result we mainly use Tajima’s result for making comparisons.
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M€ \/2 {4%/c? ;) =0.35 for the more restrictive case at
which the Hall term is not present. In the simulation runs
presented in this paper, however, a 4r=0.2 was used and
the code in both the two- and three-dimensional runs was
stable, with v, = 0.1¢, as the initial random thermal jitters of
the ion fluid particles.

2.6. Finite Grid Size Effects

Tajima et al. [2] has done a similar analysis using the
one-step Lax method for the model with the Hall term,
while Brunel er al. [3] has done so using the two-step
Lax—Wendroff scheme, but for the case in which the Hali
term is not present. Here we do the analysis for the case
when the Hall term is present in the model which uses the
two-step Lax—Wendroff scheme for pushing the magnetic
field.

At this point, we need to obtain the disperston relation for
the difference scheme. However, for comparison purposes,
we shall need the corresponding dispersion relation of the
differential equation. Recall that for propagation of the
waves parallel to B, which is along x(k,,=k=4k,), for
¢, =0, the analytic dispersion relation becomes

k2cl k2C2
— 1 X A+ x-A 70
w=k,c, + 102, L 2, (70)

as given by Eq. (29). For small wave numbers this reduces
to

2.2

k
$4 1 0k?).
2w, ’

of

w=k.c,t

- x

(71)

Substituting g, =e " =1—iwd: in Eq.(63) we
obtain the following dispersion relation for the difference
equations for this case {w = w4+ iw,):

xB,

wR=;—"sinacos%i2A2Si0200052%+0(5m30) (72)
At e sin’a

= —_—— 0 in? . 73

@1 2Af2(:os"‘(cr/2)+ (sn”e) v

For small wave numbers then, Eqgs. (72) and (73) will
reduce (2B, = c/w ;)

k3¢

wp=c k. F 2';):+O(kid3} (74)
W22

w,= — 2GR L ok 4, (75)

2

Clearly then for small wave numbers k., Eq. (72) agrees
with Eq. {71). The first term gives rise to the Alfven disper-
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sion relation w = k. ¢,,. The second term originates from the
presence of the Hall term and simply splits the Alfven
branch into the whistler (with the plus sign) and the ion
cyclotron (with the minus sign) branches, respectively. The
imaginary part of w, w;, as we see from Egs. (73) and
(75), is proportional to A¢; ie, it should arise from finite
differencing in time. [t merely acts as a damping term.

Finite grid effects come into play in higher powers of kA
as sin k.4 and cos & A are expanded. In regards to the first
term, as k, increases the dispersion relation deviates from
w=k,c, and bends down {w <k, c,). The effect on the
second term (the Hall term) is to lower the frequency of the
whistler branch and raise that of the ion-cyclotron branch;
1.e., this makes the split between them smaller.

The imaginary part of @ (w, in Eqs. (73}and (75}), simply
acts as a damping term and arises due to the finite differ-
encing as already explained. As we see, it is of the order of
&” and higher. Tt therefore effects high wave number modes
most, This can be understood since it is these modes which
are most affected by finite differencing. Often the act of finite
differencing causes the generation of unphysical behavior of
the high mode numbers which can drastically affect the
reliability of the model if these modes are important. In
particular we observed such waves upon applications of
the model to some phenomenon in which high thermal
velocities for the particies had to be used; we eliminated
large & mode effects by a process of smoothing. That work
will appear in a separate publication of this journal.

In conclusion, upon comparison of Egs. (71} and {72),
for k. small enough to be away from &k =n/24, k_ can be
very well approximated by k, — & (sin(k  4)/k ,4), and the
dispersion relation for the finite difference model (Eq. (72))
agrees quite well with that for the differential equation.
This criterion can be generalized to other arbitrary wave
numbers (k., k., k.). The relation between the differential
and difference dispersion relationships will be quite similar
to what was found here. This is very well illustrated in the
“tests of the model” section.

2.7. Finite Particle Size Effects

In obtaining spatial derivatives in this model, use has
only been made of a finite differencing technique. For the
procedure described, the finite size of the particles and their
shape arise only through their weighted contributions to
each grid point as can be seen through Eq. (40).

It is often useful to introduce particles of a finite size and
a suitable smooth shape which is independent of the grid
size; this allows us to introduce an independent fine scale
smoothing and to study its effects on the results. This is
most easily accomplished in Fourier transform space as
demonstrated by Birdsall et al. [6]. In order to obtain a
rough estimate of finite size particle effects that go with this,
we go back to Eqs. (12) and (13). For purposes of under-
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standing we treat the simplest case and just look at the
analytic dispersion relation for Alfven waves (ie., we
eliminate the pressure and the Hall terms for simplicity }; we
then need only consider the jx B/c force in the equation of
motion.

To obtain the force on particle i we must average the
jxB/c force over the grid cells j that the particle { overlaps
using area weighting just as in Eq. {40). Likewise to obtain
the fluid velocity at grid cell ; one must compute the
weighted sum of the velocities of all the particles which
overlap that grid cell. One then immediately obtains the
following set from Eqs. (12) and (13):

dv(r, 1
p vﬂg):Aﬁgw(ri—rj){Bx(VxB))[atrj] (76)
alz(trf)= (V x (vx B)) [atr,]

:vX( 5 w(rj—r‘)v(rf)xB(rj)> (77)

i€ d;

(the index i refers to the particle positions, while the j index
refers to the grid positions).

In a system with a very large number of grid points and
particles, the variables r, and r, can be thought of as chang-
ing continuously and therefore the summations over j and §
in Egs. (76) and (77) can be approximated by integrations.
The right-hand sides of Egs. (76) and (77) will appear
as convolutions in which case the variables of integration
will be the grid and particle positions, respectively; e.g.,
Eqs. (76) and (77) can be approximated by the following
pair:

p i—: (r)= ”_41_1: E: .W(rfé)('B x(VxB)) [atE]dE (78)
oB

(r)=rwVX(W(r—C)V(Q)XB(r))dQ- (79)

El .

Please note that the weight for grid cells which do not
overlap particle / are zero and vice versa. This, therefore,
justifies the — o0 to + oo limit on the integrations.

In this case, upon linearization and Fourier transforming
of Egs. (78} and (79), these equations reduce to

wv(k) = TnlE; w(k) B, x (k x B(k))

=4, {k(Bg-B(k)) — B(k)}(B, -k} }
—wB(k) =k x (w(k) ¥(k) x B,)

=w(k)[¥(k-By) —By(k-v)].

w(k) (80)
0

(81)
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For parallel propagating Alfven waves k-v=B,-B(k)=0.
Then substituting Eq. (80) in Eq. (81) gives the dispersion
relation

@?=w(k) k?c?. (82)
This is then how the weight factor affects the analytic

dispersion relation of Alfven waves.
Now given w(x) in Eq. (35), w(k) is simply

1 + dax .
wik) = — f wix) e ** dx (83)
Aax —Aax

(please recall that dax=(4+a)/2, where a is just the
particle size), which after a straightforward calculation
using the weighting defined earlier, gives the result

(k)= sin(k4/2) sin{ka/2)
=T g dax/4)

(84)

Recall that the finite grid effects also result in
k — k(sin kA/kA). The combined finite grid and particle size
effects results in modifying the dispersion relation for Alfven
waves as

1_ sin*(kA4/2) sin®(ka/2) sin? k4 K2
(K’a daxjay (k42 © A

(85)

Consequently, the combined effect is like replacing k by

sin(kA/2) sin(ka/2) sin k4
a Aaxik®/4 kd

in the analytic dispersion relation. This effect will be shown
briefly in the next section.

3. TESTING THE CODE

As mentioned, we have constructed both two- and three-
dimensional versions of the code and we have tested them
by locking at small amplitude (linearized) wave propaga-
tion in a uniform plasma. First we tested the (wo-dimen-
sional version; its geometry is shown in Fig. 3. For this
model k was restricted to the x, y plane but the velocity and
B were allowed to also have z components.

The first case we tested was the case of B parallei to %
and k = k| = k was simply along the £ direction. We tested
the code with and without the Hall term; i.e., we ran cases
in which the coefficient of the Hall term, i {defined by the
items 5 and 9 in Table 1), was set equal to zero and one. The
differences were then observed. The frequencies of the waves
were determined using the correlation technique discussed
in Dawson [ 8]. The results of these measurements are sum-
marized in Fig. 4. The two branches with s are obtained
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z |

FIG. 3. Geometry of the model.

from the Hall term version of the code; the x’s are from the
pure MHD version of the code. We see that the Hall term
causes the Alfven wave modes with frequencies at +w , to
split into the ion cyclotron and the whistler wave modes.
The turning down of the whistler wave at high & (wave
numbers) is due to the finite grid as well as finite particle size
effects discussed in previous sections. This result agrees with
that obtained by Tajima et al. [2], who used the one-step
Lax method in pushing the B, as opposed to the two-step

41 ] -
[ L. . |
' x -------
il E ..... Qeeneee Qeeeet O r
> I _..-::E"“" ]
S 1
B e~ T -
-2r e, E., .. - *
- it ) x ]
_4 . -
- “.-
_6 X 1 1 1 N . , L ] )
0 0.4 58 |
K

x  Results without the Hall term
O lon cyclotron (Hall term 50 )
e  Whistler (Hall term # 0)

- Analytic treotment

FIG. 4. Dispersion relation for the model with and without the Hall
term (propagation parallel to By).
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Lax-Wendroff method employed here; our technique, how-
ever, allowed for larger time steps, as already mentioned.
The next case we studied was for B, parallel to Z; thus k
was perpendicular to B,—these were the magnetoacoustic
cases. The Hall term does not split this branch; however,
one does see a zero frequency branch appearing which arises
simply from pressure striations confined by the magnetic
field. In Fig. 5 we include not only the pure differential dis-
persion relation obtained by finding the roots of Eq. (103)
with # =0°, k =4, but also the roots of that equation with
the wave vector k replaced by k{sin(k4)/kA) to observe the
finite grid effects, and the roots with & being replaced by

sin k4 sin(kA/2) sin(ka/2)

k kd a Aaxk*/4

to observe the combined effects of finite grid and particle
size effects. All these results are shown in the same plot
along with the simulation results in order to demonstrate
the agreement with the results obtained with regards to
these effects in the previous sections.

As a severe test of the model we ran a case of almost per-
pendicular propagation. The reason for this being that, as
mentioned in the analytic treatment section, waves almost

o Zero frequency mode
¢ Mognetoacoustic waves (simuletion)

Analytic treatment
Finite grids effects
Finite grid and particle size effects

FIG. 5. Dispersion relation for the waves propagating perpendicular
to By.
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8=90° $=-88° Ky=0
T T T T T T T y Y T
3_ . L ] -
| . 1
.
2r i iy
L .8 J
U o l A
~
~
3 i ]
-1t ‘.., i
- ‘-.. B
.-Zr. ...-- -
L e i
-3r T .
o o4 08 12
K

O lon cyclotron and lon acoustic
+ Fast wave {magnetosonic)
----+ Analytic calculations

FIG. 6. Dispersion relation for the almost perpendicular propagation.

perpendicular to B, produce large currents parallel to B,
and thus strain the numerical procedures. If the code is
correct it should give the analytically predicted frequencies.
For this reason the results of the extreme case in which
#=90° ¢ =88° and k =k (iLe., B, almost parallel to y and
k in the X direction) are shown in Fig. 6. The analytic
prediction along with the simulation results are shown in
that figure. The ion cyclotron branch, the ion acoustic
branch, and the Ailfven (or whistler) branches are shown
and they agree very well with the theory.

Finally, we have constructed a fully three-dimensional
model including the Hall term. It is the same as the 2D
model except that k can now have any direction. Figure 7
shows dispersion results (o versus & ,) for k, =k_= 1. These
modes are quite obligue and also the code is now a three-
dimensional one and will manifest most the finite grid as
well as the finite size particle effects. For that reason, the
results of the pure differential dispersion relation, as well as
analytic forms including finite grid and particle size correc-
tions, are shown on this plot along with simulation results,
Clearly we see that, finite grid and finite particle size effects
cause a substantial amount of dispersion at the higher wave
numbers; this is particularly strong for the whistler branch
which has the highest frequency. However, the results show
fairly good agreement for a relatively coarse grid system of
32° grids in all directions. To see one application of the
model, please refer to Section 4.
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Byand By correlation on theory

Whistler —— Pure analytic
A ton geoustic. —-— Finite grid effects
o lon cyclotron --—--- Finite grid and

particle size effects

FIG. 7. Dispersion relation from the three-dimensional model, fixed
k,=k.=1.
y =K

4. APPLICATION: WAVE ACTIVITY IN
FRONT OF THE COMETS

The study of shock in fronts of comets and planets have
emerged as a central area of research for space plasma
physics; i.e., shocks contribute to the energy for much of the
radiation and wave activity observed around the comets
and plancts. Studies of these waves therefore form an impor-
tant subclass of shock studies. The particle MHD code,
with its rich wave modeling capability thus serves as an
invaluable tool for such studies.

We used our code to model the AMPTE (active
magnetospheric  particle tracer explorer) experiments
(performed in July and December 1984) and published in
extensive articles in Nature magazine {10-15].

In those experiments two satellites, IRM (ion release
module) and UKS (United Kingdom subsatellite) recorded
magnetic wave amplitudes as they travelled through the
cloud and into the shock front region. They recorded wave
activity at the shock front which was conjectured to be due
to magnetoacoustic and ion acoustic waves generated in the
shock region and propagating upstream into the solar wind.

We used the two-dimensional version of the code to
model the experiment. The geometry is depicted in Fig. §;
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FIG. 8. (a) The initialization of the particles in configuration space.

(b} Contour plot of the density after three gyroperiods,

i.e., the system size was 128 x 64 grid spacings and the comet
was initially located at the grid point (80 — 32} with its un-
tonized gas flowing radially outward. The gas gradually
ionized as the cloud expanded to model solar ionization.
The B, field was taken to be along the z axis. In the simula-
tions we stored the magnetic field and densities at certain

KAZEMINEZHAD ET AL.

o

3
1
‘ .
-] - -
B08 ~ = = S
|
r=48y =32
5
g
A
E-03 e @ o ® ]
ro ! ’ =
T=64y =40
5
i
3
x l
]
E03 o % 0® e = I o=
[ b
z=80y=32

F1G, 9. The power spectra peaks at three locations in front of the
shock using the model; the system size was 128 x 64 and the comet was
centered at (80 — 32}

locations (in the shock region) on the mesh as a function of
time. We then took their Fourier transforms in time to
investigate the wave activity. The method is essentially
identical to the power spectra method described by
Dawson [8], except that here we are dealing with a fairly
inhomogeneous plasma and one that has motion. Therefore,
the power spectra peaks are not epected to be as sharp as
those of a homogeneous plasma, and their frequencies will
be slightly doppler shifted.'?

The simulations gave reasonable peaks at fairly well-
defined frequencies. Figure 9 shows some of the power

¥ In the experiment, the UKS satellite had almost no relative motion
with respect to the IRM satellite which made the release. In the simulations
also the wave analysis is done in the plasma rest frame at all points. As a
result, the frequency doppler shift does not play an important role in either
case.
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spectra of the simulations. The power spectra are those of
the magnetic field. The numbers underneath each picture
are just the coordinates of the point at which B was
analyzed; Le., they all correspond to points in the shock
region for a comet located at (80 — 32). As we see the peaks
consistently occur at w ~ 0.8 and w~ 1.2. The original w;
was @, = 0.2 in this simulation.

To identify which waves these peaks correspond to we
solved the analytic dispersion relation (Eq. (103)} with
0=0,¢=0, c,=02and ¢,=1. We only looked at waves

16 .
1.2
8 :
I 4
O ]
0 3 X BN 4 + 4
- 4F T
~ 8t 1
—12} 1
3 e
= = = = w.

413

with k.=0. The results are depicted in Fig. 10. As men-
tioned earlier, the outermost curves correspond to the pure
analytic solution, the middle ones to the analytic forms
including the finite grid corrections, and the innermost plots
to the analytic forms including finite grid as well as finite
particle size corrections. The innermost plots best compare
the simulation results of Fig. 9, while their corresponding
pure analytic plots enables us to identify the nature of the
waves. '

The analytic curves of the Fig. 10 correspond to

16 T T T T T T Lo T T T ™

1.2¢

FIG. 18. Roots of the analytic dispersion relation (w vs &, for fixed k,) for By along the z axis and k, = 0. Outermost curve is pure analytic; the middle

and innermost curves have finite grid and particle size corrections.
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FIG. 11. Some of the experimental records of the wave activity as

recorded by the IRM satellite [16].

magnetoacoustic waves since for them k_=0 and B, is
along the z axis. In the innermost curves as we see that, for
small k., o rises linearly and then becomes fairly dispersive
and flattens to a roughly constant value between @ ~ 0.7 to
@~ 1.2, depending on its &, value as we see from the three
pictures. Those are exactly the frequencies of the power
spectra peaks depicted in Fig. 9.

Figure 11 [16] shows experimental results of the wave
activity observed by the IRM satellite. The experimental
@, (the proton gyrofrequency) can be shown to be
w,=0.96 Hz, using the ambient magnetic field of 10
nanotesla in eBy,/M (e and M are the proton charge and
mass, respectively). That simply means that the frequency of
5.3 Hz in the top plot of Fig. 11 is 553w, On the other
hand, in the simuations of this subsection w,_,=0.2. As a
result the simulation peaks with frequencies 0.8 and 1.2 in
Fig. 9 correspond to frequencies 4.0w,, and 6.0, respec-
tively. Thus the experimental and the simulation frequencies
occur at roughly the same multiples of ..

As a result, assuming the magnetic waves observed by the
satellites are the same ones observed in the simulations, we
can identify them as magnetoacoustic waves.

CONCLUSION

We have constructed two- and three-dimensional particle
fluid models inlucing the Hall term and thoroughly tested
the model against theory by exploring linear wave propaga-
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tton. Detailed numerical analysis of the model has been per-
formed and thus we feel confident regarding the stability
and reliability of the model. Furthermore, the model,
including the Hall term, enabled us to study the nature of
the waves in front of the AMPTE artificial comet and to
follow the behavior over a number of ion cyclotron periods.
As for future applications, numerous problems in space as
well as fusion, such as ICRH, normal modes, and influence
of the Hall term on instabilities, can be explored by the
two- as well as three-dimensional versions of the model.

APPENDIX A: DERIVATION OF THE
DISPERSION RELATION

The starting equation for the derivation of the general
analytic dispersion relation of the MHD Hall term model is
Eq. {26) of the analytic treatment section, ie.,

—iw aB:i{ kB [k(B,-6B)—dB(k -B)]

dmpoio

[(k-By)(k’cl/w’ )k — kB, ](B, - 0B}
dnpow(l — kel /o) }

& Gk x SBYK - By),

(86)

where 8B is the perturbed magnetic field, while B, is the
externally applied magnetic field and k is the wave vector.

To ease the algebra we first obtain the dispersion relation
of the waves which propagate in the x — z plane while the
background magnetic field has an arbitrary direction
specified by the polar and the azimuthal angles. There-
after, in order to generalize this relationship to represent
arbitrary propagation of the waves, ie., to the case with
k=(k,, k,, k.), we simply make a rotation of the coor-
dinate system in which the dispersion relation with
k=(k,, 0, k.) was derived.

Let us then first consider:

k=(k.0k.)
B, = (B, sin 0 cos ¢, By sin & sin @, B cos §).

(87)
(88)
The geometry is depicted in part (a) of Fig. 12. The

Maxwell equation V-6B=0 upon Fourier transformation
gives

k-6B=0=k_.6B.+k.3B.=0 (89)
which simply implies
k.
dB, = —k—’ dB.. (90)

X

Using this along with Eqgs. (87) and (88) in Eq. (86) will
result in the following relationship, where the substitutions
&B, = ¢’ /v, and ¢’ = B}/4np, have been made:
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o+ w? [ — (k2 +k2) 2 —c? sin? 0 cos? p(2k2 +k2)
—2¢X k k. sin 0 cos 0 cos @ — ¢ cos® O(k2 + 2k?)
— ¢ sin? B sin” p(k2+k?7)

2
~ L8 (k4 k2K2) sin? § cos? @
3

ar

+ (k2kZ+ ki) cos® B

+ 2k k(K% +k2)sin 8 cos 6 cos qo)}

+w? [Zkf.[ki +k2)ekelsin® B cos? o

+ 4k ke (k2 + k%) ¢ c? sin § cos 0 cos ¢
+ 2k (k2 + k) cie? cos® O
+kAk2+ k) o sin® O cost @
+ (k2 +k2)? ¢, sin” § cos® 6 cos® ¢
+2(k2+ k) k k.o sin® 6 cos” ¢ cos @
+2(k2+ k) k k_.c% sinf cos® B cos @
+ (k* + k2k?) ¢4 sin* O sin? @ cos? @
+ 2k ke (k24 k2) ¢’ sin’ @ cos 8 sin® @ cos ¢
+ (k2k2+kY) % cos* &
+ (k2k2+ k%) ¢* sin* B cos® O sin? @

4

A (k2 4 k2) cX(k? sin® 0 cos? @
w

of

+ k2 cos® @+ 2k .k, sin 6 cos 6 cos (p)]

— A kMEI 4+ k) 2 sin* B cost @

— 6t k2ki(k: + k%) ¢ sin” 8 cos? B cos? @
—4c% sin® 0 cos® @ cos B(k2 + k2) kik, c?
—dch k2 + k) k kD sin 0 cos® B cos

—cd 2 k24 k) kdcos* 8=0.

(91)

We next make a rotation of the coordinate system by an
amount —a about the z axis as depicted in part {b) of the
Fig. 12. In this new coordinate system ¢ — ¢’ = ¢ + 2, and
the wave vector k= (k ., 0, k) will change to k', where

cosa —sina 0\ /k,
k'=|sine cosa O O {92)
0 0 1/ \k
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F1G. 12. (a) The geometry of the case with the waves propagating it

the x — z plane. (b) The geometry of the case with the waves propagating
in the arbitrary direction.

from which it immediately follows that with k'=
(K. ks K2),
ki=k, cosa {93)
ki=k,sina (94}
ki=k.. (95)
Given these then it is clear that
cos of = ———k'r (96)
VKZ+k]?
kf
sin o = 2 97N

/k;z +k;,2
all of these result in the simple relationships:

ko= ykZ4k?

k.=k..

(98}
(99)



416 KAZEMINEZHAD ET AL.

Clearly the polar angle 6 remains unchanged, while the
azimuthal angle ¢ changes to ¢’, where

@ =p+a (100}

It should then be clear that substituting for cos « and sin «
from Eqgs. (96) and (97) we obtain

1
€08 (p = ———— (k. cOs @' + K, sin ¢’) {101
VEZ+E]? : )
1

Sin @ =——=
VEZ+k?

Next substituting Eqgs. (98), (99), (101), and (102} with
#=0 in Eq. (91) will result in the general dispersion
relation which we have been looking for (primes have been
dropped and & = k3 + k2 + k2):

(kising@' —kicose’). (102)

@'+ w? {—kch — ¢ sin? B[ (1 + cos® ) k2

+(1+sin® @) kI + &2+ 2k .k, sin @ cos @]
— 2¢? sin 8 cos Bk (k, cos @ + &, sin @)
— % cos® Ok + ki + 2k?2)

4 1.2

¢ . .
- ;)4 [sin® B(k2 cos® p + k sin’ ¢

<l

+ 2k k, sin @ cos @) + k2 cos® 0

+ 2k {k, cos ¢ + k,sin @) sir_l 8 cos B]}

+ o’ {kz[Zci cZsin? 0(k?2 cos® o + k2sin® ¢

+ 2k k, sin ¢ cos @)

+ 4k _(k, cos @ + k, sin @)} ¢} ¢l sin @ cos 6

+2k2clcl cos? 8

+ ¢y sin? Bk cos® @ + k] sin® ¢ + 2k k, sin ¢ cos @)
+ ¢* sin’ 8 cos” Gk ?

+ 2k (k. cos @ + k, sin @) % sin § cos 6

+kZet cos* 0]
6‘4 k4
+ 45— ¢3[sin® 0(k? cos® @ + k3 sin® @
w

ci

+ 2k .k, sin ¢ cos @)

+kZcos® 6 + 2k (k. cos ¢ + k, sin @) sin 8 cos 9]}

+ k=% el sin® Bik? cos* ¢ + 4k k) cos @ sin® @

+ 4k k, sin ¢ cos® @

+6k3k3 sin® g cos® @ + k% sint @)

— 6l cik? sin® 6 cos® B(k2 cos’ ¢ +kIsin’ @

+ 2k K, sin ¢ cos @)

4
—4ct el

k. sin? @ cos B(k} cos® g+ klsin’ ¢

+ 32k, cos® @ sin @ + 3k k3 cos @ sin® @)

3

—4ch ek Kk cos ¢ + k, sin @) sin 8 cos® @

—cetkicos* 8} =0. (103)

APPENDIX B: LIST OF SYMBOLS

Meaning

X

E:mﬁ

e

Mo Mmoo

o
S

S_’E‘ 2 5o

n

g
¥

Breonon Bz .00 8

o
T W

Sy

Ton particle coordinate
Ion particle velocity
Fluid velocity
Proton mass
Ton number density
Ion pressure tensor
lon pressure
Unit dyadic tensor
Electron number density
Electren mass
Electronic charge
Plasma number density
Background number density
Plasma mass density
Ion temperature
Ratio of specific heats
1T:/M, (lon acoustic speed )
Electric field
Magnetic field
Speed of light
¢fdmnge (coeflicient of the Hall term)
 Bifdmp,y (Alfven speed)
Electric current
(%)), k, } (wave vector)
Wave [requency
lon cyclotron frequency
Electron cyclotron frequency

Ton plasma frequency -
Grid spacing
Magnetic flux
Particle size
Grid cell area
Weight function
B, +iB,
Amplification factor
k.4
Correlation function
Power spectrum
¢fw,,; (skin depth)

Time step
no/m[ =V -({B*2) || — BB)] (magnetic force)
—n{n/n,V ~! Va (pressure force)
Multi-streaming coefficient
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